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The most serious problem expected in the beam test of the High Pressure RF (HPRF) cavity is
the absorption of RF power by beam-induced electrons. In this note, we describe a simplified model
for the beam loading effect that could be useful for experimental measurement.

I. INTRODUCTION

High Pressure RF (HPRF) cavity can be a very ef-
fective solution for the development of a compact muon
ionization cooling system, such as Helical Cooling Chan-
nel (HCC). Initial experiments of HPRF cavity in the
absence of the beam have demonstrated that higher field
gradients are possible compared with the case of the con-
ventional evacuated cavities. Figure 1 illustrates the typ-
ical breakdown limits observed in the experiments to-
gether with the proposed operation condition for HCC.

When beam is propagating through the HPRF cavity,
however, there is some concern in relation with beam-
induced electrons. If the beam-induced electrons are not
removed properly, theory expects that significant amount
RF power is dissipated by Ohmic heating and the cavity
is heavily loaded. Detailed understanding and measure-
ment of such beam loading effects are critical to evaluate
the feasibility of HPRF cavity concept.
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FIG. 1: Typical breakdown limits observed in the experiments
without beam. The equilibrium energy (ε̄) of electrons in the
hydrogen gas is determined by a single parameter E0/p.
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FIG. 2: Equivalent circuit for the beam-loaded cavity trans-
formed into the resonator circuit. The quantity Rg = R/βc is
the load impedance seen looking back toward the generator
from the cavity. Here, βc = R/n2Z0 is the coupling coef-
ficient, n is the turns ratio of the coupling, and Z0 is the
characteristic impedance of the waveguide. The RF power
transfer from the generator becomes a maximum if the cur-
rent flowing through the matched load impedance is Ig/2.
For actual HPRF configuration, unfortunately, we don’t have
a matched load and a circulator that dissipate all backward
waves.

II. EQUIVALENT CIRCUIT MODEL

The sources of the loading effects in the HPRF cavity
can be divided into two; beam-induced image charges in
the cavity surface and beam-induced electrons generated
inside the cavity. Representing the effect of image charges
by a current generator and the effect of electrons by an
additional shut resistance (R′), we obtain the following
approximate equivalent circuit equation (See Fig. 2):{
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where ω0 = 1/
√
LC is the resonant frequency of the cav-

ity, QL(Qe) is the loaded (external) quality factor of the
cavity, and Vc = VF + VR is the cavity voltage which
is the sum of the forward and reverse voltages. Here,
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FIG. 3: Phasor diagram used to calculate tuning angle ψ
needed to make the cavity voltage Ṽc and generator current
Ĩg in phase.

∆ [1/Q] denotes the change in the quality factor due to
Ohmic dissipation, and [R/Q] is the beam-coupling pa-
rameter. Negative sign in front of the beam current Ib
indicates that the induced voltage from the beam current
will decelerate the beam. Let’s take the each term to be
varying at roughly the driving frequency ω and express
it in terms of phasor:

V = Re
[
Ṽ (t)ejωt

]
. (2)

Here, we allow for some slow variation in the envelopes.
In the slowly-varying envelope approximation, |dṼ /dt| �
|ωṼ |, the cavity responds to the generator and beam cur-
rents according to

dṼc
dτ

+ (1− j tanψ + γ)Ṽc =
1

2
QL

[
R

Q

](
Ĩg − Ĩb

)
. (3)

Here, τ = t/Tf is time measured in units of filling time
Tf = 2QL/ω0, and γ = QL∆ [1/Q] is a damping coeffi-
cient. The difference in driving frequency from resonant
frequency is characterized by tuning angle ψ, which is
given by

tanψ = QL

(
ω0

ω
− ω

ω0

)
. (4)

III. LOADING FROM BEAM-INDUCED IMAGE
CHARGES

The average DC beam current is given by

IDC =
qb
Tb
. (5)

Here, qb is the total charge in one bunch and Tb is bunch
spacing which is usually a sub-harmonic of the funda-
mental mode frequency (e.g., Tb = 4/f = 5 ns for the

HPRF). For typical beam intensity expected in the Fer-
milab linac (∼ 109 proton/bunch), we expect IDC ≈ 32
mA. Considering the bunch length (≈ 0.13 ns) is much
smaller than the bunch spacing (≈ 5 ns), we can treat
each bunch as a delta function-like pulse and obtain the
Fourier component of the beam current as Ĩb = 2IDC . In
steady state with γ = 0, the beam-induced voltage from
Ĩb becomes

Ṽb = − cosψejψQL

[
R

Q

]
IDC = Ṽbr cosψejψ, (6)

where Ṽbr is the beam-induced voltage at resonance
(ψ = 0). If Ṽb is non-negligible compared with the cav-

ity voltage Ṽc, then the cavity no longer appears to the
generator purely resistive. In this case, adjustment of
tuning angle ψ( 6= 0) is required to get the cavity voltage

Ṽc and generator current Ĩg in phase, maximizing the en-
ergy flow from the generator to the cavity. Consequently,
the required frequency detuning is given by

δf = f0 − f =
f0

2QL

|Ṽbr|
|Ṽc|

sinφs. (7)

Here, φs is the angle between the beam current phasor
and the cavity voltage phasor (synchronous phase). To
estimate δf , we consider a simple pill box cavity with ra-
dius rw and axial length d, in which [R/Q] ≈ (µ0/ε0)1/2×
T 2(d/rw), transit-time factor T = sin(πd/βλ)/(πd/βλ),

|Ṽc| ≈ E0Td. If we take the parameters to be rw = 11.43
cm, d = 3 cm, E0 = 20 MV/m, f0 = 805 MHz,
QL = 6000, β = v/c = 0.57, φs = 32◦, and λ = c/f0 = 37

cm, we have |Ṽbr| ∼ 18 kV, |Ṽc| ∼ 580 kV, and δf ∼ 1.0
kHz. Hence, the required detuning δf is small com-
pared with the half-bandwidth of the resonant cavity
f0/2QL ∼ 67 kHz, implying that the loading effect from
the beam itself will not change the resonance frequency
significantly.

Other aspect we may consider is the coupling coeffi-
cient βc. Normally, we adjust the power coupler so that
the cavity is matched to the generator (critical coupling,
βc = 1), resulting in zero reflected power at steady state.
In this way, we can minimize the generator power re-
quired to get a certain cavity voltage at steady state.
When beam is present in the cavity, however, the beam
not only absorbs some amount of generator power but
also causes power reflection, wasting some additional gen-
erator power. The adjustment of the coupler needed for
minimum reflected power is given by

δβc =
Pb
Pw

, (8)

where Pb = |Ṽc|IDC cosφs is the average power delivered

to the beam, and Pw = |Ṽc|2/Rsh is the power dissi-
pated on the cavity wall with effective shunt impedance
Rsh = 2QL [R/Q]. Considering the typical HPRF cavity
parameters, we find Pb ∼ 16 kW, Pw ∼ 303 kW, and
δβc ∼ 0.05.
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Hence, from simple estimations based on Eqs. (7) and
(8), we expect that the loading effect from beam-induced
image charges is quite small, at least compared with the
effect of beam-induced electrons (will be discussed in next
section).

IV. LOADING FROM BEAM-INDUCED
ELECTRONS

A. Electron generation and evolution

During propagation through the hydrogen gas, the in-
cident beam generates electrons by beam-impact ioniza-
tion. The electrons ejected from the primary ionization
also produce some secondary electron/ion pairs. The
resultant increase in the electron density after one mi-
cropulse (∼ 109 protons) passes through the cavity can
be conveniently expressed by

∆ne ≈
1

πr2b

ρdE/dx

Wi
× 109, (9)

where rb(≈ 1 cm) is the radius of a uniform density beam,
ρ[g/cm3] ≈ 5.6× 10−6p[psi] is the mass density of hydro-
gen gas at room temperature Troom = 300 K, dE/dx is
the stopping power, and Wi(= 35 eV) is the effective
average energy to produce an electron/ion pair.

Most electrons are thermalized quickly by elastic and
inelastic collisions with background hydrogen gas, and
drift with the applied RF field until annihilated through
recombination, attachment, or diffusion. The electron
equilibrium energy is approximately given by

ε̄ =
3

2
Te ≈ 0.357×

(
Erms
p

)0.71

, (10)

where ε̄ and Te are in eV, Erms = E0/
√

2 is in V/cm, and
p is in torr. A simplified rate equation for the electron
density in thermal equilibrium can be written as

dne
dt

= S−βr(Te)n2e−ka(Te, TH2
)nenH2

−D(Te)

Λ2
ne. (11)

Here, S is the average source term which is defined as

S ≈ ∆ne
Tb

, (12)

βr is the (total) rate coefficient for dissociative recombi-
nation (DR) processes, such as

e− + H+
2 → H + H,

e− + H+
3 → H + H + H,

→ H2 + H,

ka is the rate coefficient for dissociative attachment (DA)
to background hydrogen gas,

e− + H2 → H + H−,

and D and Λ are diffusion coefficient and length respec-
tively. At high pressure considered in the study, diffusion
is often negligible. Since only the lowest vibrational level
of the ground electronic state of H2 is populated at room
temperature, we expect ka . 10−14 cm3s−1. Therefore,
in this section, we consider only the recombination pro-
cess in solving Eq. (11). Possible enhancement of disso-
ciative attachment rate due to vibrational excitation will
be discussed in Sec. VI.

Figure 4 illustrates the evolutions of the electron den-
sity with several different macropulse lengths and beam
intensites. Here, beam pulse is assumed to arrive at the
cavity at t = 0. It is clear that electron accumulation
saturates to some finite level due to the recombination
process, particularly for long bunch length cases. When
the beam is off, then there is no electron source, and the
electron density decays slowly with characteristic time
scale of τr ∼ (neβr)

−1.

B. Perturbations from electrons

For the nominal operating conditions of the HPRF
cavity (f = ω/2π ≈ 805 MHz), ions can be assumed
to be immobile. On the other hand, electrons not
only interact with the external RF field, but also suf-
fer collisions with background gas molecules. The to-
tal electron-neutral collision frequency for momentum
transfer is approximately given νm ≈ 2.3× 1011p[psi] for
4 < E0/p [V/cm/torr] < 30 and Troom = 300 K, and the
response of plasma electrons to the external RF field is
described by conductivity:

σ = σDC

[
ν2m

ν2m + ω2
+ j

ωνm
ν2m + ω2

]
, (13)

where σDC = nee
2/meνm is the DC conductivity. When

the cavity is (partially) filled with electrons of complex
conductivity (13), the imaginary part causes the shift in
the resonance frequency and the real part the decrease
in the Q value. They are given by Slater’s perturbation
equations as

∆f = f0 − f ≈
f0
2

(
ω0

νm

)
∆

[
1

Q

]
, (14)

∆

[
1

Q

]
≈
∫
V

1
2σDCE

2
0(r, z)dV

ω0

∫
V

1
2ε0E

2
0(r, z)dV

=

(
ω0

νm

)
〈ne〉
nc

, (15)

where 〈ne〉 =
∫
V
neE

2
0dV/

∫
V
E2

0dV is the average elec-
tron density weighted over initial spatial electric field
distribution E0(r, z), and nc = ε0meω

2
0/e

2 is the crit-
ical density. If the electron swarm consists of a small
radius uniform column (r ≈ rb), much smaller than
the cavity radius rw, then we can further approximate
〈ne〉 ≈ ne(ξr

2
b/r

2
w), where the geometric factor ξ indi-

cates that the effect of accumulated electrons is large at
places where E0 is large. For example, ξ = 1 when the
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FIG. 4: Plots of electron density evolution with different macropulse lengths and beam intensities estimated from Eq. (11).
Here, E0 = 20 MV/m, p = 1000 psi, and Tb = 5 ns. For recombination rate coefficient we assume βr ∼ 7 × 10−9cm3/s

electric field is uniform across the cavity, while ξ = 3.71
for the case of a simple pillbox cavity. In the actual
HPRF cavity, electric fields are highly concentrated near
the center where most electrons are expected to be ac-
cumulated, therefore, the value of ξ will become even
higher. It should be emphasized here that Eqs. (14) and
(15) are derived based on the small perturbation. Hence,
their accuracy is questionable (particularly for frequency
shift) when electron density becomes too high. Note that
ne ∝ ρ ∝ p , therefore, ∆[1/Q] is independent of pres-
sure as long as νm ∝ p (which is not true, particularly for
E0/p . 4). For lower values of E0/p, there exists some
nonlinearity in the relation between νm and p, which en-
hances Ohmic dissipation and resultant changes in the
cavity quality factor.

C. Changes in the pickup signal

With no beam current (Ĩb = 0), zero detuning (ψ = 0),

and proper normalization [for γ → 0, V̂c(t → ∞) → 1],
Eq. (3) is simplified as

dV̂c
dτ

+ [1 + γ(τ)] V̂c = 1. (16)

Here, the damping coefficient γ is essentially the ratio of
power dissipated by Ohmic heating by electrons (POhmic)
to power dissipated in the cavity wall (Pwall) and the ex-
ternal load (Pext), i.e., γ = POhmic/(Pwall + Pext). Note
that γ is directly proportional to the evolution of elec-
tron density. When there is significant reduction in the
pickup signal as indicated in Fig. 5, the electron temper-
ature will be lowered and the recombination rate will be
increased accordingly. Indeed, this effect may cause the
pickup signal to recover much quicker than expected in
Fig. 5.

When there is significant change in the resonant fre-
quency, we cannot simply neglect the detuning term
(j tanψ) in Eq. (3). This detuning effect will not only
further reduce the amplitude of the pickup signal, but
also cause phase shift in both pickup and reflected sig-
nals.

V. SUPERFISH CALCULATION

SUPERFISH is a freeware program for calculating RF
fields in either 2-D cartesian coordinates or axially sym-
metric cylindrical coordinates. Although SUPERFISH
itself cannot handle the microscopic electron dynamics
with collisions and various molecular processes, average
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FIG. 5: Plots of changes in the amplitude of the pickup signal with different macropulse lengths and beam intensities. Here,
E0 = 20 MV/m, p = 1000 psi, Tb = 5 ns, and QL = 6000. For simplicity, a simple pill box cavity without detuning has been
assumed. The RF pulse starts at t = −10 µs and ends t = 20 µs while incident beam is on at t = 0 µs.

macroscopic effects can be calculated by using appropri-
ate dielectric constant.

A. Changes due to high pressure gas

When the cavity is pressurized, we observe changes in
the resonance frequency mostly due to the increase in
the electric susceptibility χe (See Fig. 6). Using the
approximate relation between susceptibility (the macro-
scopic parameter) and molecular polarizability (the mi-
croscopic parameter), we obtain the following dielectric
constant that includes the presence of high pressure gas:

ε/ε0 = 1 + χe = 1 +
(nαp/ε0)

1− (nαp/3ε0)
. (17)

Here, αp is molecular polarizability, which is often
expressed in terms of relative polarizability αR =
αp/(4πε0a

3
0), where a0 is the Bohr radius. Note that

number density of the gas n is proportional to the gas
pressure by n[cm−3] ≈ 1.7× 1018p[psi].
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FIG. 6: Changes in the resonance frequency according to the
hydrogen gas pressure.

B. Changes due to electrons

When electrons are accumulated inside the cavity,
the electron column can be regarded as a lossy dielec-
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FIG. 8: Changes in the resonance frequency depending on the
electron density.

tric material with complex dielectric constant. Using
the plasma conductivity defined in Eq. (13), we find
ε/ε0 = 1− jσ/(ε0ω), or explicitly,

ε/ε0 = 1−
ω2
pe

ν2m + ω2
+ j

(νm
ω

) ω2
pe

ν2m + ω2
, (18)

where ω2
pe = nee

2/(ε0me) is the plasma frequency.
Figure 7 shows the changes in the quality factor ∆[1/Q]

calculated either from simple analytic formula (15) in the
pill box configuration or SUPERFISH in the actual HPRF
cavity. The discrepancy between those two calculations
are attributed to the geometric effect explained in Sec. IV
B. Apart from the factor ∼ 3, both calculations exhibit
a linear relation between ∆[1/Q] and electron density as
expected.

On the other hand, values of the resonance frequency
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FIG. 9: Changes in the amplitude of the pickup signal right
after beam is incident on the cavity. The decay time is ex-
pected to be somewhat longer than the typical gas breakdown
time scale (∼ 20 ns) observed in the previous experiment.
Note that, however, shift in the resonance frequency is not
included in this plot.

shift ∆f are quite different depending on the calculation
methods. While ∆f appears to be negligibly small in the
analytic estimation, SUPERFISH calculation indicates
that ∆f increases considerably after ne > 1013cm−3. It is
suspected that perturbation method for calculating res-
onance frequency is no longer valid after electric fields
are violently altered. If ∆f > f0/2QL, we may observe
phase shift in the pickup signal as well.

VI. EXPERIMENTS

A. Scan for different macropulse length and beam
intensity

How to change either macropulse length or beam inten-
sity without affecting whole accelerator complex should
be discussed in detail before beam commissioning. Such
capability is vital for the successful physics program of
the HPRF beam test.

For currently envisioned beam parameters (∼ 109 pro-
ton/bunch and ∼ 20 µs macropulse length), we expect
fast decay of the pickup signal and huge reflected power
(see. Fig. 5). Even in this case, the decay time may be
somewhat longer than typical gas breakdown time scale
(∼ 20 ns) observed in the previous experiment (See. Fig.
9).

With long RF pulse (> 60 µs), we may investigate
the effect of recombination (or other electron removal
process) by observing recovery of the pickup signal after
beam passes through the cavity.
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FIG. 10: Equilibrium electron density as a function of dopant
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B. Scan for different E0/p

As long as E0/p is less than the gas breakdown limit,
operating HPRF cavity at higher E0/p seems to be more
favorable for dissociative attachment. At higher E0/p,
the heating of a hydrogen molecule by collisions with elec-
trons will increase, and the vibrational excitation of the
ground state molecule could be enhanced. The dissocia-

tive attachment rate is known to increase dramatically
with increasing vibrational energy.

In addition, electrons with higher E0/p tends to have
the higher dissociative attachment rate for a given vibra-
tional state.

C. Scan for different dopant gas fraction

With a dopant gas, the average lifetime of a beam-
induced electron is determined by the sum of the time
needed for the electron to be thermalized to an energy
level at which attachment becomes significant, τε, plus
the average time required before the electron is then
captured, τa ≈ 1/(kaαn). Here, ka is the electron at-
tachment rate coefficient and α is the partial fraction of
dopant in the gas mixture. If τε + τa < Tb(= 5 ns), then
the equilibrium electron density is approximately given
by

ne ≈ S(τε + τa). (19)

Figure 10 suggests that dopant fraction of only ∼ 0.2%
is enough to minimize the beam loading effect presented
in Figs. 4 and 5.


